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Yang-Mills Theory

Yang-Mills theory is a generalization of Maxwell’s theory on
electromagnetism, used to describe the weak force and the strong
force in subatomic particles. This theory was introduced by physicists
Yang C.N. and Robert L.Mills.
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Yang-Mills Theory

Yang-Mills theory is a generalization of Maxwell’s theory on
electromagnetism, used to describe the weak force and the strong
force in subatomic particles. This theory was introduced by physicists
Yang C.N. and Robert L.Mills.

Surprisingly, Simons and Yang discovered the correspondences
between Yang-Mills theory and fiber bundle theory: gauge potential to
connection on a principal bundle, gauge field to curvature,
electromagnetism to connections on U(1)-bundle, Dirac’s monopole
quantization to classfication of U(1)-bundle and so on. Physicists and
mathematicians developed their theory independently but finally
coincided.
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Yang-Mills Theory

Given a vector bundle E(complex or real) over M, a connection on E is
a map:
Va: QY(E) — Q}y(E)

which satisfies the Leibnitz rule:
Va(fs) = df ® s+ Vs

Here QF, denotes sections of AP T*M ® E, i.e. p-forms with value in E.
A connection naturally induces a differential operator called covariant
derivative dj : Qf,(E) — Qj\’/,“ (E), and curvature of V4 is defined to be
Fa = d3 on Q%,(E).
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Yang-Mills Theory

Given E a Hermitian bundle over a Riemannian manifold M, we can
define the Yang-Mills functional of a given connection V 4 as follows:

IFall> = [ IFaPde
M
And we can obtain its Euler-Lagrange equation:
daFa=0

which is known as Yang-Mills equation. When structure group is the
abelian group U(1), this equation is just classical Maxwell equation.
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Instantons

Now we focus on SU(2)-bundle E over compact 4-manifolds. Then for
any SU(2)-connections A, first Chern class must vanish and E is
topologically determined by second Chern class given by:

() = s T(Fa N F)

Equivalently, we can consider the second Chern number; but here we
refer it as Pontrjagin index, following physicists’ terminology:

1
k=—-c= 871'2/,\47?(FA/\FA)
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Instantons

By Hodge * operator, we divide the integral into two parts:

1 2 —112
k=gz(IFal® = 1IFslF)

which gives a lower bound of Yang-Mills functional:
IFAll? = [IFX 12 + | Fy |1 > 872 K|

This minimum is obtained iff F, = 0 or F, = 0, depending on whether
k is positive or not. We then call them self-dual connections or
anti-self-dual connections respectively. By physical consideration, we
also call them instantons. Note that instanton satisfies Yang-Mills
equation trivially.
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Instanton Moduli Space

The set of all instantons moduli the action of gauge transformations
becomes a smooth manifold, possibly with some singularities. A
typical example is the moduli space over S*.

Theorem (Atiyah-Hitchin-Singer,1977)

The space of moduli of self-dual SU(2)-Yang-Mills fields over S*, with
Pontrjagin index k > 1, is a manifold of dimension 8k — 3.
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Instanton Moduli Space

The set of all instantons moduli the action of gauge transformations
becomes a smooth manifold, possibly with some singularities. A
typical example is the moduli space over S*.

Theorem (Atiyah-Hitchin-Singer,1977)

The space of moduli of self-dual SU(2)-Yang-Mills fields over S*, with
Pontrjagin index k > 1, is a manifold of dimension 8k — 3.

Later, these parameters are constructed explicitly via just linear
algebra, named as "ADHM Construction”, given by
Atiyah,Hitchin,Drinfeld and Manin. Their construction is motivated from
algebraic geometry.
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The most surprising fact is that the study of instanton moduli space
can be applied to differential topology research.
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Wild at Heart

Dimension 4 is mysterious and wild. You may consider the following
facts: Let M" be a closed topological manifold, then
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@ If n < 3, there is exactly one smooth structure on M;
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Wild at Heart

Dimension 4 is mysterious and wild. You may consider the following
facts: Let M" be a closed topological manifold, then

@ If n < 3, there is exactly one smooth structure on M;
©Q If n> 5, there are at most finitely many smooth structures on M;
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Wild at Heart

Dimension 4 is mysterious and wild. You may consider the following
facts: Let M" be a closed topological manifold, then

@ If n < 3, there is exactly one smooth structure on M;
©Q If n> 5, there are at most finitely many smooth structures on M;

© If n= 4, there are many simply-connected closed manifolds that
admit infinitely many distinct smooth structures; there are no
smooth 4-manifolds known to have only finitely many smooth
structures.
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Intersection forms

The study of manifold topology relies on intersection forms largely,
which we now explain.
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Intersection forms

The study of manifold topology relies on intersection forms largely,
which we now explain.

We can define the cup product pairing for closed oriented manifold M*
as follows:

Q: H3(M;Z) @ H3(M; Z) — Z, (o, B) — (o U B)[M]
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Intersection forms

The study of manifold topology relies on intersection forms largely,
which we now explain.

We can define the cup product pairing for closed oriented manifold M*
as follows:

Q: H3(M;Z) @ H3(M; Z) — Z, (o, B) — (o U B)[M]

Due to Poincaré duality, the pairing is nonsingular when torsion is
factored out. We focus on the case that M* is an oriented
simply-connected closed manifold where H?(M; Z) is free.
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Intersection forms

The study of manifold topology relies on intersection forms largely,
which we now explain.

We can define the cup product pairing for closed oriented manifold M*
as follows:

Q: H3(M;Z) @ H3(M; Z) — Z, (o, B) — (o U B)[M]

Due to Poincaré duality, the pairing is nonsingular when torsion is
factored out. We focus on the case that M* is an oriented
simply-connected closed manifold where H?(M; Z) is free.
Question: To what extent can intersection form determine the
topology and differential topology of manifolds?
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Algebraic Classfication of unimodular forms

For indefinite unimodular forms, Hasse and Minkowski made a
complete classfication. There are actually only two different cases,
depending on whether it is odd or even.
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Algebraic Classfication of unimodular forms

For indefinite unimodular forms, Hasse and Minkowski made a
complete classfication. There are actually only two different cases,
depending on whether it is odd or even.

But the classfication of definite forms is still open. Here we want to
point out that there are enormous distinct definite forms, say at least 8
millions in rank 32, at least 105" in rank 40.
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Topological Classfication

Freedman solved the classification problem completely.

Theorem (Freedman,1982)

For any integral symmetric unimodular form Q, there is a closed
simply-connected topological 4-manifold that has Q as its intersection
form. More precisely,

@ /fQ is even, there is exactly one such manifold;

©Q /fQ is odd, there are exactly two such manifolds, at least one of
which doesn’t admit any smooth structures.
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Topological Classfication

Freedman solved the classification problem completely.

Theorem (Freedman,1982)

For any integral symmetric unimodular form Q, there is a closed
simply-connected topological 4-manifold that has Q as its intersection
form. More precisely,

@ /fQ is even, there is exactly one such manifold;

©Q /fQ is odd, there are exactly two such manifolds, at least one of
which doesn’t admit any smooth structures.

In particular, two smooth simply-connected 4-manifolds with
isomorphic intersection forms are homeomorphic.
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Donaldson’s Result

However, Donaldson proved the following surprising result:

Theorem (Donaldson,1983)
The only definite forms that can be realized by smooth 4-manifolds are
justem(1) and &m(—1).

Thus, none of exotic definite forms can be realized by smooth
4-manifolds.
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Donaldson’s Result

Several results can be deduced from Donaldson’s theorem:
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@ Any smooth simply-connected 4-manifold is homeomorphic to
#mCP?4nCP2 or #mMg#n(S?)
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Donaldson’s Result

Several results can be deduced from Donaldson’s theorem:
Q@ Any smooth simply-connected 4-manifold is homeomorphic to
#mCP?4nCP2 or #mMg#n(S?)
© A large number of topological 4-manifolds cannot admit a smooth
structure
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Donaldson’s Result

Several results can be deduced from Donaldson’s theorem:
@ Any smooth simply-connected 4-manifold is homeomorphic to
#mCP?4nCP2 or #mMg#n(S?)
© A large number of topological 4-manifolds cannot admit a smooth
structure

© Existence of fake R*
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Sketch of Donaldson’s proof

We sketch how Donaldson proved this remarkable result via instanton
moduli space. He considered the SU(2)-bundle with Pontrjagin index
—1 over M, and study the topology of instanton moduli space M.
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Sketch of Donaldson’s proof

We sketch how Donaldson proved this remarkable result via instanton
moduli space. He considered the SU(2)-bundle with Pontrjagin index
—1 over M, and study the topology of instanton moduli space M.

It turns out that M is a smooth 5-manifold with m singularities, and
around these singularities are like a cone in CP?. Here m is half the
solutions to Q(«, «) = 1. Moreover, M contains a collar of M such that
M = MU M is a compact oriented smooth manifold with boundary.
Therefore, M is oriented cobordant to m disjoint complex
projective spaces, i.e.-£CP?1I ... 11 +CP?.
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Sketch of Donaldson’s proof

The final attack comes from a simple algebraic lemma:

Let Q be a positive definite symmetric unimodular form with rank r, m
is defined as before. Then m < r, where the equality holds if and only
if Q is diagonalizable overZ.
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Sketch of Donaldson’s proof

Now since the signature of intersection form is an oriented cobordism
invariant, it follows that:

r=o<mo(CP?) =m

But from lemma, m < r. Hence the equality holds and Q is
diagonalizable.Q.E.D.
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